**Now Includes SigmaXL Version 10**

  • Home /
  • DSIM Feature List Summary
img
<< Back to Table of Contents

Getting Started Tutorial


For SigmaXL Version 10 features, click here!

DiscoverSim Version 2.2 Feature List Summary


Key Features (bold denotes new in Version 2.0, 2.1 and 2.2):


  • Excel add-in for Monte Carlo Simulation and Optimization

  • Uses Six Sigma Language: Specify Inputs (Xs) and Outputs (Ys)

  • Monte Carlo simulation with 53 Continuous and 10 Discrete Distributions

  • Batch Distribution Fitting for all Continuous and Discrete Distributions (excluding custom)

  • Nonnormal Process Capability for all Continuous and Discrete Distributions (excluding custom)

  • Percentiles to Parameter Calculator

  • Specify Input Correlations

  • Excel Formula Interpreter for Accelerated Calculations

  • Sensitivity Analysis based on correlation or stepwise regression

  • Optimization using Input Controls:

    • Mixed Integer Distributed Ant Colony Global Optimization (MIDACO)

    • Genetic Algorithm (GA) Global Optimization

    • Sequential Quadratic Programming (SQP) for Fast Local Optimization

    • Nelder-Mead (NM) simplex optimization for fast non-smooth problems

    • Exhaustive Discrete optimization - all combinations for small discreet problems

    • Powerful hybrid of the above 3 methods:

      1. 1. All discrete control: MIDACO or Exhaustive Discrete if applicable


        2. All continuous controls: MIDACO, GA, followed by SQP or NM


        3. Mixed continous/discrete controls: MIDACO 1 (Course), MIDACO 2 (Fine), followed by SQP or NM


    • Specify linear and nonlinear constraints

    • Stochastic Optimization minimize dpm or maximize Ppk

    • Insert DSIM function such as Percentiles or Capability Metrics.  These can then be used in constraints

    • Multiple Response Optimization using Desirability, Weighted Sum or Deviation from Target

    Common Continuous Distributions:



    • Normal
    • Triangular
    • Uniform
    • Pearson Family (specify Mean, StdDev, Skewness, Kurtosis)
    • Log Normal**
    • Exponential**
    • Weibull**
    • PERT
    • Custom Continuous (Weighted and Unweighted)

    Advanced Continuous Distributions:


  • Beta
  • Johnson SB
  • Beta (4 Parameter)
  • Johnson SL
  • Box-Cox**
  • Johnson SU
  • Burr**
  • Laplace
  • Cauchy
  • Largest Extreme Value
  • Chi-Squared**
  • Levy
  • Chi-Squared with Scale (3 Parameter)**
  • Logistic
  • Error Function (ERF)
  • Log Gamma**
  • F**
  • Log Logistic**
  • F with Scale (4 Parameter)**
  • Maxwell
  • Fatigue Life**
  • Non-Central Chi-Squared**
  • Fisk**
  • Non-Central F**
  • Folded Normal
  • Non-Central T
  • Frechet**
  • Pareto
  • Gamma**
  • Power
  • Generalized Error
  • Rayleigh
  • Generalized Gamma**
  • Reciprocal
  • Generalized Logistic
  • Skew Normal
  • Generalized Pareto
  • Smallest Extreme Value
  • Half Normal**
  • Students T
  • Inverse Gamma**
  • Students T with Location and Scale (3 Parameter)
  • Inverse Gaussian
  • Von Mises


  • ** denotes with/without Threshold


    Common Continuous Distributions:


    • Bernoulli (Yes/No)
    • Binomial
    • Geometric
    • Hypergeometric
    • Logarithmic
    • Negative Binomial
    • Poisson
    • Step
    • Uniform (Discrete)
    • Custom Discrete (Weighted and Unweighted)

    Stochastic Information Packet (SIP):


    • Import Stochastic Information Packet (SIP).
    • A SIP is a standard library of data (see ProbabilityManagement.org for more details on this standard).


Back to Table of Contents

Define, Measure, Analyze, Improve, Control

img

Simulate, Optimize, Realize

img